

Mark Scheme (Results)

January 2015

Pearson Edexcel International GCSE Mathematics A (4PM0) Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2015 Publications Code UG040562 All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - \circ M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
 - cao correct answer only
 - o ft follow through
 - isw ignore subsequent working
 - SC special case
 - o oe or equivalent (and appropriate)
 - o dep dependent
 - o indep independent
 - \circ eeoo each error or omission
- No working
 - If no working is shown then correct answers normally score full marks
 - If no working is shown then incorrect (even though nearly correct) answers score no marks.
- With working

If there is a wrong answer indicated always check the working in the body of the script and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses two A (or B) marks on that part, but can gain the M marks. Mark all work on follow through but enter A0 (or B0) for the first two A or B marks gained.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there are multiple attempts shown, then all attempts should be marked and the highest score on a single attempt should be awarded.

• Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially shows that the candidate did not understand the demand of the question.

• Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x=...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for *a*, *b* and *c*, leading to x = ...

- 3. <u>Completing the square:</u>
 - $x^{2} + bx + c = 0$: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to x =

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by either

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

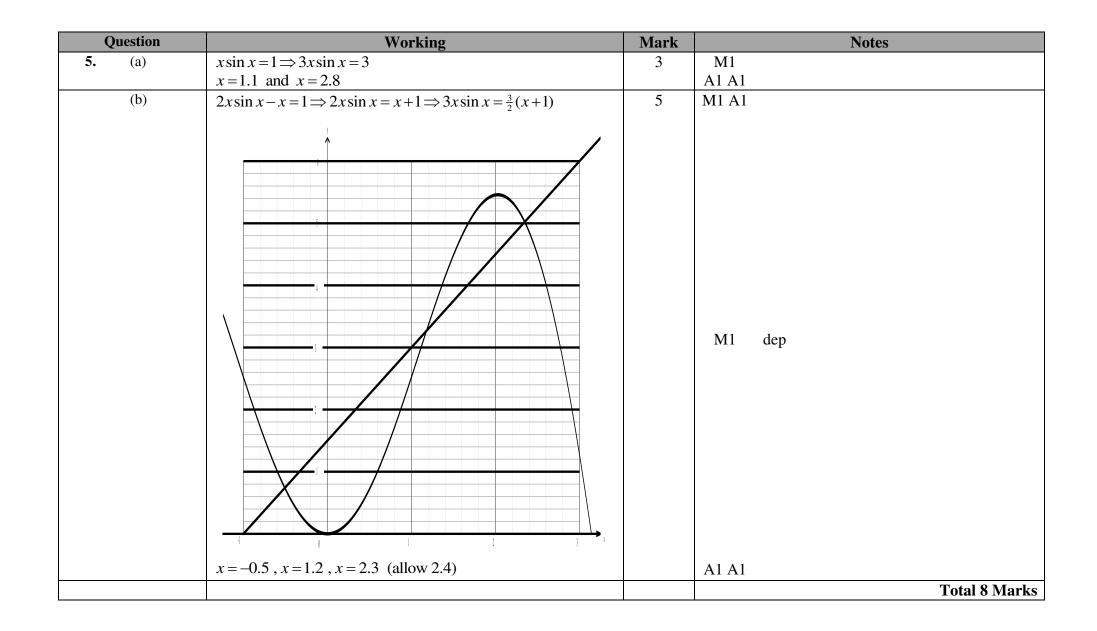
The rubric states "Without sufficient working, correct answers may be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)


Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question	Working	Mark	Notes
1. (a)	x = 2x	4	M1
	$\sin C \sin 100^{\circ}$		
	$\sin C = \frac{\sin 100^{\circ}}{2}$		M1 dep
	$C = 29.5^{\circ}$		A1 cao
	$\angle BAC = 180^{\circ} - 100^{\circ} - 29.5^{\circ} = 50.5^{\circ}$		A1 ft
(b)	$\frac{1}{2}x \times 2x \sin 50.5^{\circ} = 16$	3	M1
	$x = \sqrt{\frac{16}{\sin 50.5^{\circ}}} = \sqrt{20.735} = 4.55$		M1 dep A1 cao
			Total 7 Marks

Question	Working	Mark		Notes
2. (a)	$S = 2\pi r \frac{V}{\pi r^{2}} + 2\pi r^{2}, = \frac{2V}{r} + 2\pi r^{2} *$	2	M1 A1 cso	
(b)	$\frac{dS}{dr} = -\frac{2V}{r^2} + 4\pi r \text{ or } -\frac{3200}{r^2} + 4\pi r$	7	M1	
	For S _{min} : $-\frac{2V}{r^2} + 4\pi r = 0$ or $-\frac{3200}{r^2} + 4\pi r = 0$		M1 dep)
	$\frac{2V}{r^2} = 4\pi r \Longrightarrow r^3 = \frac{V}{2\pi} \text{ or } \frac{3200}{r^2} = 4\pi r \Longrightarrow r^3 = \frac{800}{\pi}$			
	$r = \sqrt[3]{\frac{800}{\pi}}$ (= 6.338)		A1 oe	
	$S = \frac{2 \times 1600}{6.338} + 2\pi \times 6.338^2 = 757$		M1 A1 cao	
	$\frac{\mathrm{d}^2 S}{\mathrm{d}r^2} = \frac{4V}{r^3} + 4\pi \text{or} \frac{6400}{r^3} + 4\pi > 0 \text{ (for } r > 0) \Rightarrow \text{minimum}$			consider gradient either side of SV merical values must be shown).
				Total 9 Marks

Question	Working	Mark	Notes
3. (a)	$3^2 - 4 \times 2 \times c = 0$	2	M1
	$c = \frac{9}{8}, 1\frac{1}{8} \text{ or } 1.125$		A1 cao
(b)	$x = \frac{-3 \pm 0}{2 \times 2}$ or $(2x + \frac{3}{2})(x + \frac{3}{4}) = 0$ or $(4x + 3)^2 = 0$	2	M1 oe
	$x = -\frac{3}{4}$ or -0.75		A1
			Total 4 Marks

Question	Working	Mark	Notes
4. (a)	$\sqrt{2}$ 1	1	B1 oe
	$\frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$		
(b)	$\sin(45^\circ + \theta) = \sin 45^\circ \cos \theta + \cos 45^\circ \sin \theta$	2	
	$=\frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2\sqrt{2}} + \frac{\sqrt{2}}{2}\frac{\sqrt{5}}{2\sqrt{2}}, =\frac{\sqrt{3}}{4} + \frac{\sqrt{5}}{4} = \frac{\sqrt{3} + \sqrt{5}}{4} *$		M1 A1
(c)		2	
(0)	$\cos(45^\circ + 30^\circ) = \cos 45^\circ \cos \theta - \sin 45^\circ \sin \theta$	Z	
	$-\frac{\sqrt{2}}{\sqrt{3}} \frac{\sqrt{2}}{\sqrt{5}} \frac{\sqrt{3}}{\sqrt{5}} \frac{\sqrt{5}}{\sqrt{5}} \frac{\sqrt{3}}{\sqrt{5}} \frac{\sqrt{3}}{\sqrt{5}}$		
	$=\frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2\sqrt{2}}-\frac{\sqrt{2}}{2}\frac{\sqrt{5}}{2\sqrt{2}}, =\frac{\sqrt{3}}{4}-\frac{\sqrt{5}}{4}=\frac{\sqrt{3}-\sqrt{5}}{4}$		M1 A1
(d)	$\sin(45^{\circ} + \theta)\cos(45^{\circ} + \theta) = \left(\frac{\sqrt{3} + \sqrt{5}}{4}\right)\left(\frac{\sqrt{3} - \sqrt{5}}{4}\right) = \frac{3 - 5}{16}$	2	M1
	$=\frac{-2}{16}=-\frac{1}{8}$ *		A1
			Total 7 Marks

Question	Working	Mark		Notes
6. (a)(i)	$\alpha\beta = -\frac{3}{2}$	4	B1	
(a)(ii)	$\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$			
	$\alpha\beta = -\frac{3}{2}$ $\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$ $= \alpha\beta + 2 + \frac{1}{\alpha\beta} \text{ or } \frac{(\alpha\beta + 1)^2}{\alpha\beta} \text{ or } \frac{-\frac{1}{2}}{\beta} \times \frac{-\frac{1}{2}}{\alpha}$ $= -\frac{3}{2} + 2 - \frac{2}{3} \text{ or } \frac{(-\frac{1}{2})^2}{-\frac{3}{2}}$		M1	
	$= -\frac{3}{2} + 2 - \frac{2}{3} or \frac{\left(-\frac{1}{2}\right)^2}{-\frac{3}{2}}$		M1	dep
			A1	cao
(b)(i)	$\alpha + \beta = -\frac{p}{2}$	4	B1	
(b)(ii)	$\begin{aligned} \alpha + \beta &= -\frac{p}{2} \\ \left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) \\ &= (\alpha + \beta) + \frac{\alpha + \beta}{\alpha\beta} \text{ or } \frac{(\alpha + \beta)(\alpha\beta + 1)}{\alpha\beta} \text{ or } -\frac{1}{2}\left(\frac{\alpha + \beta}{\alpha\beta}\right) \\ &= -\frac{p}{2} + \frac{-p}{\frac{2}{3}} \text{ or } \frac{-\frac{p}{2}(-\frac{3}{2} + 1)}{-\frac{3}{2}} \text{ or } -\frac{1}{2}\left(\frac{-\frac{p}{2}}{-\frac{3}{2}}\right) \end{aligned}$			
	$= (\alpha + \beta) + \frac{\alpha + \beta}{\alpha \beta} \text{ or } \frac{(\alpha + \beta)(\alpha \beta + 1)}{\alpha \beta} \text{ or } -\frac{1}{2} \left(\frac{\alpha + \beta}{\alpha \beta} \right)$		M1	
			M1	
	$=-\frac{p}{6}$		A1	
(c)	$-\frac{p}{6} = 2\left(-\frac{1}{6}\right) \Longrightarrow p = 2$	1	B1	ft
(d)	$x^{2} - \left(-\frac{2}{6}\right)x + \left(-\frac{1}{6}\right) = 0$	2	M1	
	$\Rightarrow 6x^2 + 2x - 1 = 0$		A1	cao
				Total 11 Marks

Question	Working	Mark	Notes
7. (a)	$t_{15} = -14 + (15 - 1)4 = -14 + 56 = 42$	2	M1 A1
(b)	$S_{25} = \frac{25}{2} \left(2 \times -14 + (25 - 1)4 \right)$	3	M1 A1
	$=\frac{25}{2}\left(-28+96\right)=\frac{25}{2}\times68=850$		A1 cao

(c)	If first of 9 terms is a then the last term is $a + 8 \times 4$	5	M1
	or sum is $\frac{9}{2}(2a + (9-1)4)$	5	1111
	$\Rightarrow \frac{9}{2}(a+a+32) = 1422$		
	$\Rightarrow 2a+32=316 \Rightarrow a=142$		M1 A1
	$\rightarrow 2u + 32 - 310 \rightarrow u - 142$		M1 A1 cao
	OR		OR
	$S_{r+8} - S_{r-1}$ (=1422)		
	$\frac{r+8}{2}\left(-28+4(r+7)\right) - \frac{r-1}{2}\left(-28+4(r-2)\right) (=1422)$		M1 Either of the required sums
	(r+8)(4r)-(r-1)(4r-36)=2844		
	$4r^2 + 32r - 4r^2 + 36r + 4r - 36 = 2844$		M1
	$72r = 2880 \Longrightarrow r = 40$		A1
	$t_{40} = -14 + 39 \times 4 = 142$		M1 A1
	OR		OR
	$S_{r+9} - S_r$ (=1422)		
	$\frac{r+9}{2}\left(-28+4(r+8)\right) - \frac{r}{2}\left(-28+4(r-1)\right) (=1422)$		M1 Either of the required sums
	$\binom{2}{(r+9)(4r+4)-(r)(4r-32)} = 2844$		1
	$4r^{2} + 36r + 4r + 36 - 4r^{2} + 32r = 2844$		
			M1
	$72r = 2808 \Longrightarrow r = 39$		A1
	$t_{39+1} = -14 + 39 \times 4 = 142$		M1 A1
	39+1		
	OR		OR

7. (c)	OR	OR
	$A + (A+d) + \dots + (A+8d) = 1422$ $9A + \frac{1}{2}(d+8d)8 = 1422$	M1 M1 A1 M1 for equation in A and d A1 for a correct equation with a single term in A
	$9A + 144 = 1422 \Longrightarrow 9A = 1278$ $A = 142$	M1 A1
		Total 10 Marks

Question	Working	Mark		Notes
8. (a)	$(1-2x)^{5} = 1+5(-2x)+10(-2x)^{2}+10(-2x)^{3}+5(-2x)^{4}+(-2x)^{5}$	3	M1	
	OR = 1+5(-2x)+ $\frac{5.4}{2!}(-2x)^2 + \frac{5.4.3}{3!}(-2x)^3 + \frac{5.4.3.2}{4!}(-2x)^4 + (-2x)^5$			
	$=1-10x+40x^2-80x^3+80x^4-32x^5$		A1 A1	A1 for 3 correct terms A2 for all terms correct
(b)	$(1+2x)^{-5} = 1 + \frac{-5}{1}(2x) + \frac{-5 \times -6}{1 \times 2}(2x)^{2} + \frac{-5 \times -6 \times -7}{1 \times 2 \times 3}(2x)^{3} \cdots$	3	M1	
	$=1-10x+60x^2-280x^3\cdots$		A1 A1	
(c)	Valid when $ 2x < 1 \implies x < \frac{1}{2}$ or $-\frac{1}{2} < x < \frac{1}{2}$	1	B1	
(d)	$\left(\frac{1-2x}{1+2x}\right)^5 = \left(1-10x+40x^2\cdots\right)\left(1-10x+60x^2\cdots\right)$	3	M1	
	$=1-10x+60x^2-10x+100x^2+40x^2\cdots$		M1	
	$=1-20x+200x^2\cdots$		A1	cao
(e)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -20 + 400x \cdots$	2	M1	
	when $x = 0$, gradient = -20		A1	CSO
				Total 12 Marks

Question	Working	Mark		Notes
9. (a)	$DE^2 = 13^2 - 5^2, \Longrightarrow DE = 12$	4	M1 A1	
	$BE^2 = 10^2 - 5^2 \text{ or } BE = 10\sin 60^\circ \text{ or } 10\cos 30^\circ \text{ or } 5\tan 60^\circ$		M1	
			A1	oe
(b)	$BE = \sqrt{75}$ (cm) or $BE = 5\sqrt{3}$ (cm) ^B	3	M1	
	$(5\sqrt{3})^{2} = 13^{2} + 12^{2} - 2 \times 13 \times 12 \cos BDE$ $\cos BDE = \frac{13^{2} + 12^{2} - (5\sqrt{3})^{2}}{2 \times 13 \times 12} \left(= \frac{238}{312} \right)$	5	A1	oe, ft cao
	$\angle BDE = 40.3^{\circ}$		A1	
(c)	$\frac{5\sqrt{3}}{\sin 40.3^{\circ}} = \frac{12}{\sin DBE} \text{ or } 12^2 = 13^2 + 75 - 2 \times 13 \times \sqrt{75} \cos B$	3	M1	
	$\sin DBE = \frac{12\sin 40.3^{\circ}}{5\sqrt{3}} \ (= 0.8960) \ or \ \cos B = \frac{100}{26\sqrt{75}} \ (= 0.4441)$		A1	ft
	$\angle DBE = 63.6^{\circ}$		A1	сао
(d)	$\angle DEB = 180^{\circ} - 40.3^{\circ} - 63.6^{\circ}$	2	M1	or complete method using sin or cos rule
	$\angle DEB = 76.1^{\circ}$		A1	cao
(e)	$h = 13\sin 63.6^{\circ}$ or $h = 12\sin 76.1^{\circ} = 11.648$	3	M1	
	base area $=\frac{1}{2} \times 10^2 \times \sin 60^\circ = 25\sqrt{3} \ (=43.30)$		M1	
	$V = \frac{1}{3} \times 25\sqrt{3} \times 11.648 = 168 \text{ (cm}^3\text{)}$		A1	cao
				Total 15 Marks

Question	Working	Mark	Notes
10. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 27x^2 - 36x - 8$	4	M1 A1
	At $P(0, 24)$, gradient = -8		M1 dep
	Equation of PQ is $y = -8x + 24$		A1 cao
(b)	At Q , $9x^3 - 18x^2 - 8x + 24 = -8x + 24$	5	M1
	$\Rightarrow 9x^3 - 18x^2 = 0$		A1
	$\Rightarrow 9x^2(x-2) = 0$		
	$\Rightarrow x = 2 \qquad (x = 0 \text{ at } P)$		M1 A1
	$y = 9 \times 2^3 - 18 \times 2^2 - 8 \times 2 + 24 = 8$		A1
	so Q (2, 8)		
(c)	Since <i>PQRS</i> is a parallelogram, <i>RS</i> is parallel to <i>QP</i> so gradient of <i>RS</i> is -8	4	
	$\Rightarrow 27x^2 - 36x - 8 = -8$		M1
	$\Rightarrow 27x - 50x - 8 = -8$ $\Rightarrow 9x(3x - 4) = 0$		IVI I
	$\Rightarrow x = \frac{4}{3} \qquad (x = 0 \text{ at } P)$		
			M1 A1
	$y = 9\left(\frac{4}{3}\right)^3 - 18\left(\frac{4}{3}\right)^2 - 8\left(\frac{4}{3}\right) + 24 = \frac{8}{3}$		A1
	so $R\left(\frac{4}{3},\frac{8}{3}\right)$		
(d)	$x \operatorname{coord} = \frac{4}{3} + (0-2)$ $y \operatorname{coord} = \frac{8}{3} + (24-16)$	2	M1
	$S(-\frac{2}{3},18\frac{2}{3})$		A1 cao
(e)	If $x = -\frac{2}{3}$, $y = 9\left(\frac{-2}{3}\right)^3 - 18\left(\frac{-2}{3}\right)^2 - 8\left(\frac{-2}{3}\right) + 24$	2	
	$= -\frac{8}{3} - 8 + \frac{16}{3} + 24 = \frac{8}{3} + 16 = 18\frac{2}{3}$		M1
	$\Rightarrow S\left(-\frac{2}{3}, 18\frac{2}{3}\right)$ lies on C.		A1 cso
			A1 cso Total 17 Marks

https://xtremepape.rs/

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE